Abstract
The use of recurrent neural networks for skeletonization and thinning of binary images is investigated. The networks are trained to learn a deletion rule and they iteratively delete object pixels until only the skeleton remains. Recurrent neural network architectures that implement a variety of thinning algorithms, such as the Rosenfeld-Kak algorithm and the Wang-Zhang (WZ) algorithm, are presented. A modified WZ algorithm which produces skeletons that are intuitively more pleasing is introduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.