Abstract

3D woven carbon/epoxy composites are often produced using resin transfer molding technique which includes epoxy curing at elevated temperatures. The process may lead to accumulation of the intrinsic residual stresses during cooling of the material caused by the mismatch between carbon and epoxy coefficients of thermal expansion. This paper deals with implementation of mesoscale finite element models to evaluate intrinsic residual stresses in 3D woven composites. The stresses are determined by correlation of the surface displacements observed after drilling 1-mm diameter blind holes with the corresponding predictions of the models. We investigated how a numerical representation of the composite plate surface affects the correlation between the experimental measurements and numerical predictions and how it influences the evaluation of the process-induced residual stresses. It has been shown for ply-to-ply woven composites with different pick spacing that the absence of the resin layer leads to more accurate interpretation of the experimental measurements. The prediction of the average residual stress in the matrix phase of the composite was found to be sensitive to the surface representation accuracy, however, the residual stress magnitude and distribution was not affected fundamentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call