Abstract

Several constitutive models for magnetic shape memory alloys (MSMAs) have been proposed in the literature. The implementation of numerical integration schemes, which allow the prediction of constitutive response for general loading cases and ultimately the incorporation of MSMA response into numerical solution algorithms for fully coupled magneto-mechanical boundary value problems, however, has received only very limited attention. In this work, we establish two algorithmic implementations of the internal variable model for MSMAs proposed in (Kiefer and Lagoudas 2005 Phil. Mag. Spec. Issue: RecentAdv. Theor. Mech. 85 4289–329, Kiefer and Lagoudas 2009 J. Intell. Mater.Syst. 20 143–70), where we restrict our attention to pure martensitic variant reorientation to limit complexity. The first updating scheme is based on the numerical integration of the reorientation strain evolution equation and represents a classical predictor–corrector-type general return mapping algorithm. In the second approach, the inequality-constrained optimization problem associated with internal variable evolution is converted into an unconstrained problem via Fischer–Burmeister complementarity functions and then iteratively solved in standard Newton–Raphson format. Simulations are verified by comparison to closed-form solutions for experimentally relevant loading cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.