Abstract

We show how a non-local quantum CNOT with (N-1)-target operation can be implemented with unit fidelity and unit probability by using a N-qubit maximally entangled GHZ state as quantum channel. We also put forward two schemes for probabilistic implementing the operation with unit fidelity by employing a partially entangled pure GHZ state as quantum channel. The overall physical resources required for accomplishing these schemes are different, and the successful implementation probabilities are also different. We also point out the non-local CNOT with (N-1)-target operation can be used as a purification protocol to concentrate entanglement from an ensemble of partially entangled GHZ states into a subensemble of maximally entangled ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call