Abstract

In this paper, a multi-step registration method of brain atlas and clinical Magnetic Resonance Imaging (MRI) data based on Thin-Plate Splines (TPS) and Piecewise Grid System (PGS) is presented. The method can help doctors to determine the corresponding anatomical structure between patient image and the brain atlas by piecewise nonlinear registration. Since doctors mostly pay attention to particular Region of Interest (ROI), and a global nonlinear registration is quite time-consuming which is not suitable for real-time clinical application, we propose a novel method to conduct linear registration in global area before nonlinear registration is performed in selected ROI. The homogenous feature points are defined to calculate the transform matrix between patient data and the brain atlas to conclude the mapping function. Finally, we integrate the proposed approach into an application of neurosurgical planning and guidance system which lends great efficiency in both neuro-anatomical education and guiding of neurosurgical operations. The experimental results reveal that the proposed approach can keep an average registration error of 0.25mm in near real-time manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call