Abstract

The theoretical description of modern nanoelectronic devices requires a quantum mechanical treatment and often involves disorder, e.g. from alloys. Therefore, the ab initio theory of transport using non-equilibrium Green’s functions is extended to the case of disorder described by the coherent potential approximation. This requires the calculation of non-equilibrium vertex corrections. We implement the vertex corrections in a Korringa–Kohn–Rostoker multiple scattering scheme. In order to verify our implementation and to demonstrate the accuracy and applicability we investigate a system of an iron-cobalt alloy layer embedded in copper. The results obtained with the coherent potential approximation are compared to supercell calculations. It turns out that vertex corrections play an important role for this system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call