Abstract

During their service, engine oils suffer from various influencing parameters such as thermo-oxidative stress and nitration, hence, the accumulation of degradation products and the entry of contaminants. Accordingly, ICEs need to be able to operate satisfactorily, especially with a degraded lubricant, making it highly recommendable to use such oils for component testing in ICE development. Thus, a new nitrative thermo-oxidative ageing method is presented for closer-to-reality simulation of engine oil alteration with the intention to provide reproducibly aged oils for subsequent bench testing. With this method, a target used oil from field application was replicated and the comparability of oil condition in the lab vs. field regarding oxidation, nitration, additive depletion, and acidification amongst others was verified by conventional and advanced analyses. Special focus was laid on the identification of nitration products, proving them to be predominantly oxidized aromatic species or organophosphates. The presented method gives valuable benefit for the closer-to-reality ageing of engine oils in reasonable time frames with moderate costs and, hence, for the provision of test oils for ICE bench testing enabling rapid engine component assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.