Abstract
The Natural Language Processing (NLP) approach has been proven to be effective in spam detection in e-mail because of its ability to process text and identify patterns and distinctive characteristics of spam e-mail. Methods in this NLP approach include data pre-processing, such as removing punctuation, irrelevant common words, tokenization, stemming, and others, as well as classification techniques such as Support Vector Classifier (SVC), Naive Bayes, and others. In testing various models, there is one model that shows the highest precision with the number 0.98. This study shows that the NLP approach provides better performance in spam detection compared to other methods. However, it is necessary to improve technology and develop more complex detection methods to improve the performance and accuracy of the email spam detection model
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IJEBD (International Journal of Entrepreneurship and Business Development)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.