Abstract

Quasi-three-dimensional numerical model of solid oxide fuel cell, which assumes constant physicochemical properties within the cell components in the thickness direction, typically employs a simple gas diffusion model for species transport in the porous electrodes, such as the Fick’s model. In this study, a three-dimensional grid system is introduced in the anode layer and coupled with the quasi-three-dimensional solid oxide fuel cell model. The multi-component dusty-gas model is implemented to solve the conservation of species on this three-dimensional grid system. The results with the developed model are compared with experimental data obtained under hydrogen fuel. The obtained results show that the dusty-gas model can accurately predict the transport of gas species in the porous anode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call