Abstract

Owing to escalating concerns regarding global warming, there has been a heightened focus on greenhouse gases emitted by vehicles. To effectively monitor and certify the fuel consumption and CO2 emissions of heavy-duty vehicles, this study proposes a calculation model named the China Heavy-Duty Vehicle Energy Consumption and Carbon Emission Calculation Model (CHECM). The CHECM is a simulation tool based on longitudinal dynamics. A classification learner was utilised to obtain shifting strategies, achieving accuracies of 92.9% and 93.5% under regulated driving cycles. A fuel-consumption model was incorporated to predict the transient performance of the engine and transmission. In addition, the Sobol method was used to assess the sensitivities of rolling resistance, air drag and rotational mass conversion coefficients to the driving force and a method was proposed to obtain the road resistance correction factor. The test results of three China-6 heavy-duty vehicles over two regulatory test cycles were obtained and used for model accuracy evaluation. The results showed that the deviations between the measured and calculated fuel consumption were 1.25–3.57%, whereas those between the measured and calculated CO2 emissions using the Chinese World Transient Vehicle Cycle were 3.23–4.16%. The CHECM has the potential to accurately replicate various driving conditions and vehicle configurations, particularly when specific sources of uncertainty are constrained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.