Abstract
The impact of preanalytical sample handling on lipid stability has been assessed in human plasma using targeted LC-MS/MS quantification of endocannabinoids, sphingolipids and LPA, complemented by non-targeted lipidomics screening with LC-QTOFMS. The study involved incubation of whole blood and plasma from healthy volunteers at room temperature or in ice water for time periods ranging from 20 min to 24 h. The impact of two different anticoagulants, K3EDTA and sodium fluoride/citrate, on lipid stability was evaluated. It was found that the concentrations determined for several endogenous lipids vary when whole blood and plasma samples are processed at room temperature, whereas the concentrations of most lipids were stable for 4 h in ice water. Surprisingly, the detected amounts of endocannabinoids 1- and 2-arachidonoyl glycerol and arachidonoyl ethanolamide increased markedly by 60, 95, and 30% in K3EDTA whole blood after storage in ice water for only 20 min. When using sodium fluoride/citrate blood collection tubes, the stability of several lipids, including that of the endocannabinoids, was improved. Accordingly, it is absolutely necessary to keep the blood sampling and plasma processing time below 1 h to avoid ex-vivo formation of endocannabinoids. It is worth mentioning that baseline lipid levels differ when using K3EDTA or sodium fluoride/citrate blood sampling tubes, which emphasizes the importance of traceability of reported plasma concentrations to the used anticoagulant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.