Abstract
Stock investment is in great demand by investors because it can provide large profits with large risks or losses, in accordance with the investment principle of low risk low return, high risk high return. Stock prices that fluctuate in a very short time make it difficult for investors to predict stock prices in the future, so investors must pay more attention and gather as much information as possible regarding the shares to be bought or sold. This study aims to create a data mining model using a Linear Regression algorithm that can predict daily stock closing prices to provide information that supports investors in stock transactions. The data used is historical data on daily stock prices for 10 companies in the last 8 years for the period 25 February 2013 – 25 February 2021. Historical stock price data will be prepared using the Noving Average method and create a data mining model using the linear regression method to generate stock price prediction models. The resulting model can be used to predict stock prices well enough to assist investors in making investment decisions to obtain large profits with low risk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.