Abstract

Temperature gradient is an important performance indicator of a stirred liquid bath. Its evaluation requires measuring the temperature differences between different bath positions. A common way to do that is to place two SPRTs at two positions and measure their resistances against a standard resistor (R SPRT1/R S and R SPRT2/R S) sequentially (the sequential method). A drawback of this method is the existence of a time gap between the two measurements rendering the results susceptible to temporal temperature variation. The instantaneous comparisons method offers a better solution by measuring the resistance ratio of two SPRTs directly (R SPRT1/R SPRT2) and deriving their temperature difference at the same moment eliminating the time gap. To implement this method at the Standards and Calibration Laboratory (SCL) of Hong Kong, the resistance ratio of SPRT1 to a standard resistor (R SPRT1/R s) is firstly measured to determine the initial bath temperature. After that, the resistance ratios of SPRT1 to SPRT2 (R SPRT1/R SPRT2) are measured with the two SPRTs placed at different positions and immersion depths in the bath. This paper describes the derivation of the temperature difference from the SPRT resistance ratio using the ITS-90 reference equations and the estimation of the measurement uncertainties. The potential of reducing the uncertainties of measured temperature gradient by leveraging the correlation of the two SPRTs calibrated at the same set of temperature fixed points is discussed. The paper also compares the calibration results obtained by the instantaneous comparisons method and the sequential method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.