Abstract

We consider group-covariant positive operator valued measures (POVMs) on a finite dimensional quantum system. Following Neumark’s theorem a POVM can be implemented by an orthogonal measurement on a larger system. Accordingly, our goal is to find a quantum circuit implementation of a given group-covariant POVM which uses the symmetry of the POVM. Based on representation theory of the symmetry group we develop a general approach for the implementation of group-covariant POVMs which consist of rank-one operators. The construction relies on a method to decompose matrices that intertwine two representations of a finite group. We give several examples for which the resulting quantum circuits are efficient. In particular, we obtain efficient quantum circuits for a class of POVMs generated by Weyl–Heisenberg groups. These circuits allow to implement an approximative simultaneous measurement of the position and crystal momentum of a particle moving on a cyclic chain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.