Abstract

Ultraviolet photodissociation (UVPD) is a nonselective activation method in which both precursor and fragment ions may absorb photons and dissociate. Photoactivation of fragment ions may result in secondary or multiple generations of dissociation, which decreases the signal-to-noise ratio (S/N) of larger fragment ions owing to the prevalent subdivision of the ion current into many smaller, often less informative, fragment ions. Here we report the use of dipolar excitation waveforms to displace fragment ions out of the laser beam path, thus alleviating the extent of secondary dissociation during 193 nm UVPD. This fragment ion protection (FIP) strategy increases S/N of larger fragment ions and improves the sequence coverage obtained for proteins via retaining information deeper into the midsection of protein sequences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call