Abstract

Few years ago, cryptography based on elliptic curves was increasingly used in the field of security. It has also gained a lot of importance in the academic community and industry. This is particularly due to the high level of security that it offers with relatively small size of the keys, in addition to its ability to the construction of original protocols which are characterized by high efficiency. Moreover, it is a technique of great interest for hardware and software implementation. Pairing-friendly curves are important for speeding up the arithmetic calculation of pairing on elliptic curves such as the Barreto-Naehrig (BN) curves that arguably constitute one of the most versatile families. In this paper, the proposed architecture is designed for field programmable gate array (FPGA) platforms. We present implementation results of the Miller's algorithm of the optimal ate pairing targeting the 128-bit security level using such a curve BN defined over a 256-bit prime field. And we present also a fast formulas for BN elliptic-curve addition and doubling. Our architecture is able to compute the Miller's algorithm in just 638337 of clock cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.