Abstract
B-spline methods are now well established as widely applicable tools for the evaluation of atomic and molecular continuum states. The mathematical technique of exterior complex scaling has been shown, in a variety of other implementations, to be a powerful method with which to solve atomic and molecular scattering problems, because it allows the correct imposition of continuum boundary conditions without their explicit analytic application. In this paper, an implementation of exterior complex scaling in B-splines is described that can bring the well-developed technology of B-splines to bear on new problems, including multiple ionization and breakup problems, in a straightforward way. The approach is demonstrated for examples involving the continuum motion of nuclei in diatomic molecules as well as electronic continua. For problems involving electrons, a method based on Poisson's equation is presented for computing two-electron integrals over B-splines under exterior complex scaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics B: Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.