Abstract

The student <span>attendance system is what is needed in the process of recording attendance in learning and the development of student achievement. Currently several modern educational institutions have implemented a student attendance system using QR codes or fingerprints, but many still use the traditional system by calculating the number of students attending class. Based on these problems, the solution that can be given is to implement a student attendance system through face matching in the Android mobile application with Eigenface algorithm and support vector machine (SVM) algorithm. Eigenface using the principal component analysis (PCA) method can be used to reduce the dimensions of facial images so that they produce fewer variables and are easier to handle. The results obtained are then entered into a pattern classifier to determine the identity of the owner of the face. This study used 100 facial data as test data and training data. The system test results show that the use of Eigenface with SVM as a classifier can provide a fairly high level of accuracy. For facial images that were included in the training, 91% of the identification was correct.</span>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.