Abstract

The assembly process of large-scale and non-standard industrial equipment poses significant challenges due to its inherent scale-related complexity and proneness to errors, making it difficult to ensure process cost, production cycle, and assembly accuracy. In response to the limitations of traditional ineffective production models, this paper aims to explore and propose a digital twin (DT)-based technology paradigm for the intelligent assembly of large-scale and non-standard industrial equipment, focusing on both the equipment structure and assembly process levels. The paradigm incorporates key technologies that facilitate the integration of virtual and physical information, including the establishment and updating of DT models for assembly structures using actual data, the assessment of structural assemblability based on DT models, the planning and simulation of assembly processes, and the implementation of virtual commissioning technology tailored to the actual assembly process. The effectiveness of the proposed paradigm is demonstrated through a case study involving the actual assembly of a large-scale aerodynamic experimental equipment. The results confirm its ability to provide valuable technical support for the design, evaluation, and optimization of industrial equipment assembly processes. By leveraging the DT-based methodological system proposed in this paper, significant improvements in the transparency and intelligence of industrial equipment production processes can be achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.