Abstract

The work aims to develop digital control and management systems of copper electrolytic refining processes when addressing energy efficiency issues. Thermal imaging scanners can be used to monitor the process state of an electrolytic cell. In this regard, the experience in the automation and control systems of OJSC Novgorod Metallurgical Plant was considered. Mathematical research methods and a stochastic model developed in the MatLab software were used. This model was applied at the Lao Cai copper-smelting plant (Vietnam). The proposed algorithm is based on the temperature variation in electrolyte depending on the heating of cathode and anode sections during short circuits due to dendritic growth, as well as process disturbance time. The algorithm was developed using the Visual BasicScript programming languages. The temperature rise in short circuit areas was recorded using a thermal imaging scanner immediately after the colour change of the cathode surface. It was shown that the duration of a short circuit depends on the amount of sludge deposited in an electrolytic cell. The sludge formed following the destruction of intergrown dendrites contains precious metals. The developed measures, along with those of digitisation, are necessary for effective management, taking into account the functional and kinetic characteristics of the copper refining process. The proposed solutions and control algorithms will allow remote access systems with augmented reality elements when creating a digital twin. This will reduce the specific power consumption by 20 –25% while decreasing the number of electrode short circuits. Controlling the composition and level of electrolyte and sludge will reduce material losses and maintain the concentration of noble metals in the electrolyte. To improve the control quality of automation during the electrolytic production of cathode copper, a number of technical measures were proposed that provide additional points of control to expand the process database. Furthermore, the proportion of manual periodic measurements of process parameters is reduced.

Highlights

Read more

Summary

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call