Abstract

The Gauss-Laguerre quadrature method is used on the Cartesian semiaxes in the momentum space to construct a family of lattice Boltzmann models. When all quadrature orders Qx, Qy, Qz equal N+1, the Laguerre lattice Boltzmann model LLB(Qx,Qy,Qz) exactly recovers all moments up to order N of the Maxwell-Boltzmann equilibrium distribution function f(eq), calculated over any Cartesian octant of the three-dimensional momentum space. Results of Couette flow simulations at Kn=0.1, 0.5, 1.0 and in the ballistic regime are reported. Specific microfluidic effects (velocity slip, temperature jump, longitudinal heat flux) are well captured up to Kn=0.5, as demonstrated by comparison to direct simulation Monte Carlo results. Excellent agreement with analytic results is obtained in the ballistic regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.