Abstract

Abstract Due to the wide applicability of separation techniques that rely on the property of differential migration in pharmaceutical formulations analysis, different analytical strategies have been proposed to resolve mixtures of multi-components pharmaceuticals. Three separation methods were developed and validated for the simultaneous determination of Paracetamol (PAR), Pseudoephedrine HCl (PSE) and Chlorpheniramine maleate (CHP). The first method is a thin-layer chromatographic (TLC) separation, followed by densitometric measurement. The separation was carried out on aluminium sheet of silica gel 60 F254 using ethanol:chloroform:ammonia (1:7:0.4, by volume) as the mobile phase. Determination of PAR, PSE and CHP was successfully applied over the concentration ranges of 3–25 µg/band, 0.5–10 µg/band and 0.1–6 µg/band, respectively. The second method is HPLC separation that was achieved on C18 column using the mobile phase acetonitrile:phosphate buffer pH 5 (10:90, v/v) at a flow rate 1 mL min−1. PAR, PSE and CHP were determined by HPLC in concentration ranges of 5–400 μg mL−1, 2–40 μg mL−1 and 0.5–16 μg mL−1, respectively. The third method is a capillary electrophoresis (CE) separation. The electrophoretic separation was achieved using 20 mM phosphate buffer (pH 6.5) at 20 kV. The linearity was reached over concentration ranges of 30–250 μg mL−1, 5–50 μg mL−1 and 0.8–20 μg mL−1 for PAR, PSE and CHP, respectively. The developed methods were validated with respect to linearity, precision, accuracy and system suitability. The proposed methods were successfully applied for bulk powder and dosage form analysis with RSD of precision <2%. Moreover, statistical comparison with the official methods confirms the methods' validity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call