Abstract
Due to efficient and adaptable data collecting, unmanned aerial vehicle (UAV) has been a popular topic in computer vision (CV) and remote sensing (RS) in recent years. Inspiring by the recent success of deep learning (DL), several enhanced object identification and tracking methods have been broadly applied to a variety of UAV-related applications, including environmental monitoring, precision agriculture, and traffic management. In this research, we present efficient neural network (ENet), a unique deep neural network architecture designed exclusively for jobs demanding low latency operation. ENet is up to quicker, takes fewer floating-point operations per second (FLOPs), has fewer parameters, and offers accuracy comparable to or superior to that of previous models. We have tested it on the street and cityscapes reports on comparisons with current state-of-the-art approaches and the tradeoffs between a network's processing speed and accuracy. We give measurements of the proposed architecture's performance on embedded devices and offer software enhancements that might make ENet even quicker.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IAES International Journal of Artificial Intelligence (IJ-AI)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.