Abstract

Lampung province has development activity orienting on source potential in the agricultural sector mainly food crops. Yield estimation of food crops is one of the things crucial problems in the agricultural sector, because of the farmers' lack of knowledge about the bountiful harvest, and climate change big impact on the yield of food crops. Then it was needed to be developed modeling to prediction system of food crops by data mining, with Naïve Bayes Classifier (NBC) which expected will give information and can use by the farmer and industrial food crops. On classification, progress attributes that use there is the temperature (°C), humidity (%), rainfall (mm), photoperiodicity (hour), and production result (ton) as a class attribute. The data of research that getting there are climate data and yield of food crops by data from the Central Bureau of Statistics (BPS) and the Meteorology, Climatology and Geophysics Agency (BMKG) from 2010 to 2017 at Lampung Province. Data of food crops used in this research there are paddy, maize, and soybean. The research results about the average accuracy of modeling that development using the 10-fold cross-validation method, that had an accuracy value of 72.78% and Root Mean Square Error (RMSE) there is 0.438.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.