Abstract

In order to meet the current targets not only in terms of safety, but also in terms of lightweight that means lower polluting gas emissions and fuel consumption, for a newly developed vehicle it is necessary to perform a number of component based tests. This kind of experimental test is time consuming and very expensive. Therefore, it is recommended to develop cost effective design methodology and analysis using existing finite element methods in order to evaluate the performance of different design solutions under various loading, material and environmental conditions, from the earliest stages of the design activity. This paper intends to address such design aspects and method of analysis with particular reference to the application of composite and recyclable thermoplastic materials to automotive front bumper design. Major constraints that have been dealt with are bumper crash resistance, absorbed energy and stiffness with particular reference to the existing bumper standards. Finally, the results predicted by the finite element analysis are evaluated and interpreted to examine the effectiveness of the proposed solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.