Abstract
We characterize and validate the cloud products from the Tropospheric Emission Spectrometer (TES) by comparing TES estimates of effective cloud optical depth and cloud top height to those from the Moderate Resolution Imaging Spectroradiometer (on EOS) (MODIS), the Atmospheric Infrared Sounder (AIRS), and to simulated data. TES measures in the infrared spectral region (650–2260 cm−1), where clouds have a ubiquitous impact on measured radiances and therefore on trace gas profile retrievals. The radiance contribution of clouds is parameterized in TES retrievals in terms of a set of frequency‐dependent nonscattering effective optical depths and a cloud height. This unique approach jointly retrieves cloud parameters with surface temperature, emissivity, atmospheric temperature, and trace gases such as ozone from TES spectral radiances. We calculate the relationship between the true optical depth and the TES effective optical depth for a range of single‐scatter albedo and phase functions to show how this varies with cloud type. We estimate the errors on retrieved cloud parameters using a simulated data set covering a wide range of cloud cases. For simulations with no noise on the radiances, cloud height errors are less than 30 hPa, and effective optical depth follows expected behavior for input optical depths of less than 3. When random noise is included on the radiances, and atmospheric variables are included in the retrieval, cloud height errors are approximately 200 hPa, and the estimated effective optical depth has sensitivity between optical depths of 0.3 and 10. The estimated errors from simulation are consistent with differences between TES and cloud top heights and optical depth from MODIS and AIRS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.