Abstract

The problem of constructing simple disjunctive normal forms (DNFs) of Boolean functions with a small number of zeros is considered. The problem is of interest in the complexity analysis of Boolean functions and in its applications to data analysis. The method used is a further development of the reduction approach to the construction of DNFs of Boolean functions. A key idea of the reduction method is that a Boolean function is represented as a disjunction of Boolean functions with fewer zeros. In a number of practically important cases, this technique makes it possible to considerably reduce the complexity of DNF implementations of Boolean functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.