Abstract

The implementation of bilinear nonconforming finite elements in the advection-diffusion part of an Eulerian air pollution model for long-range transport of air pollutants is discussed. The final aim will be to implement such elements in the operational version of a particular air pollution model, the Danish Eulerian Model (DEM). One-dimensional first-order finite element method is currently used during the space discretization of the advection-diffusion part in the operational version of DEM. The application of more accurate methods in the advection part of DEM is desirable. Two different bilinear nonconforming finite elements have been implemented and compared. The rotational test is very popular among researchers in the fields of meteorology and environmental modelling. Numerical results that are obtained in the treatment of the rotational test with the new finite element schemes show that these elements have good qualities and, therefore, it is worthwhile to replace the one-dimensional first-order finite elements with one of the bilinear nonconforming finite elements considered in the paper.Key wordsair pollution modellingrotational testnonconforming finite elements

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.