Abstract

This paper describes the design of an artificial neural network (ANN) control with power sharing control abilities of a new proposed double-input boost power converter (DIBC). The goal of this research is to model and design a high effectiveness and great performance double-input power converter for renewable energy applications. First, an artificial neural network controller design which is flexible versus a variable input voltage resource and variable load (to achieve the line regulation test and load regulation test) is proposed. Lastly, the suggested concept has been validated through experimentally on the laboratory prototype by using DSP TMS320F28335 real-time digital control. The experimental outcomes emphasize the authenticity of the suggested topology, which can be promising a novel topology that includes double-input power converter appropriate for renewable energy application systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.