Abstract

Artificial Intelligence (AI) has revolutionized the management of non-small-cell lung cancer (NSCLC) by enhancing different aspects, including staging, prognosis assessment, treatment prediction, response evaluation, recurrence/prognosis prediction, and personalized prognostic assessment. AI algorithms may accurately classify NSCLC stages using machine learning techniques and deep imaging data analysis. This could potentially improve precision and efficiency in staging, facilitating personalized treatment decisions. Furthermore, there are data suggesting the potential application of AI-based models in predicting prognosis in terms of survival rates and disease progression by integrating clinical, imaging and molecular data. In the present narrative review, we will analyze the preliminary studies reporting on how AI algorithms could predict responses to various treatment modalities, such as surgery, radiotherapy, chemotherapy, targeted therapy, and immunotherapy. There is robust evidence suggesting that AI also plays a crucial role in predicting the likelihood of tumor recurrence after surgery and the pattern of failure, which has significant implications for tailoring adjuvant treatments. The successful implementation of AI in personalized prognostic assessment requires the integration of different data sources, including clinical, molecular, and imaging data. Machine learning (ML) and deep learning (DL) techniques enable AI models to analyze these data and generate personalized prognostic predictions, allowing for a precise and individualized approach to patient care. However, challenges relating to data quality, interpretability, and the ability of AI models to generalize need to be addressed. Collaboration among clinicians, data scientists, and regulators is critical for the responsible implementation of AI and for maximizing its benefits in providing a more personalized prognostic assessment. Continued research, validation, and collaboration are essential to fully exploit the potential of AI in NSCLC management and improve patient outcomes. Herein, we have summarized the state of the art of applications of AI in lung cancer for predicting staging, prognosis, and pattern of recurrence after treatment in order to provide to the readers a large comprehensive overview of this challenging issue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.