Abstract
AbstractFuture traffic that will be accompanied by higher alternative drive concepts will pose as a challenge when it comes to corresponding energy systems, coordination of operations, and communication interfaces, such as needed for data acquisition and billing. On one hand, the increasing attractiveness of electric vehicles will inevitably lead to the development and testing of compatible technologies; on the other, these will need to be conformed to existing systems, when integrating them into the prevailing infrastructure and traffic. Funded by the German Federal Ministry of Transport, Building and Urban Development, an inductive vehicle charging system and a compatible prototype bus fleet shall be integrated into Braunschweig’s traffic infrastructure in the scope of the project emil (Elektromobilität mittels induktiver Ladung – electric mobility via inductive charging). This paper describes the functional implementations in SUMO that are required by the methodic approach for the evaluation of novel charging infrastructures by means of traffic simulation.KeywordsTraffic simulationUrban trafficInductive energy transferPublic transportationVehicle model
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.