Abstract

Cone‐beam computed tomography (CBCT) images suffer from poor image quality, in a large part due to contamination from scattered X‐rays. In this work, a Monte Carlo (MC)‐based iterative scatter correction algorithm was implemented on measured phantom data acquired from a clinical on‐board CBCT scanner. An efficient EGSnrc user code (egs_cbct) was used to transport photons through an uncorrected CBCT scan of a Catphan 600 phantom. From the simulation output, the contribution from primary and scattered photons was estimated in each projection image. From these estimates, an iterative scatter correction was performed on the raw CBCT projection data. The results of the scatter correction were compared with the default vendor reconstruction. The scatter correction was found to reduce the error in CT number for selected regions of interest, while improving contrast‐to‐noise ratio (CNR) by 18%. These results demonstrate the performance of the proposed scatter correction algorithm in improving image quality for clinical CBCT images.PACS numbers: 87.10.Rt, 87.57.Q‐

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.