Abstract

Node localization is a fundamental task in wireless sensor networks as it is useful for several localization based protocols and applications. Node localization using Global Poisoning System (GPS) employed fixed terrestrial anchor nodes suffers from high deployment cost and poor localization accuracy in GPS denied locations. These issues can be easily handled by deploying movable Unmanned Aerial Vehicles (UAVs). A movable UAV equipped with a single GPS module virtually increases number of anchor nodes and localizes a node at different locations. Hence, UAVs are cost effective and also provides high localization accuracy. As the flying altitude of UAV greatly influence localization accuracy, the present work firstly optimizes the flying height and then the node localization is defined as least square optimization problem using this optimal height. Since the classical received signal strength indicator based multilateration results high localization error, the least square localization using optimization techniques is found to be better alternative. The recently proposed Artificial Bee Colony (ABC) algorithm is a powerful optimization technique that can be applied for this optimization problem to achieve high accuracy. Thus, this paper aims at designing an ABC localization technique using UAV anchors to achieve minimum localization error. Further, we provide detailed simulation analysis to support the proposed ABC localization scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call