Abstract

ObjectiveTo implement an all-day artificial intelligence (AI)–based system to facilitate chest pain triage in the emergency department. MethodsThe AI-based triage system encompasses an AI model combining a convolutional neural network and long short-term memory to detect ST-elevation myocardial infarction (STEMI) on electrocardiography (ECG) and a clinical risk score (ASAP) to prioritize patients for ECG examination. The AI model was developed on 2907 twelve-lead ECGs: 882 STEMI and 2025 non-STEMI ECGs. ResultsBetween November 1, 2019, and October 31, 2020, we enrolled 154 consecutive patients with STEMI: 68 during the AI-based triage period and 86 during the conventional triage period. The mean ± SD door-to-balloon (D2B) time was significantly shortened from 64.5±35.3 minutes to 53.2±12.7 minutes (P=.007), with 98.5% vs 87.2% (P=.009) of D2B times being less than 90 minutes in the AI group vs the conventional group. Among patients with an ASAP score of 3 or higher, the median door-to-ECG time decreased from 30 minutes (interquartile range [IQR], 7−59 minutes) to 6 minutes (IQR, 4−30 minutes) (P<.001). The overall performances of the AI model in identifying STEMI from 21,035 ECGs assessed by accuracy, precision, recall, area under the receiver operating characteristic curve, F1 score, and specificity were 0.997, 0.802, 0.977, 0.999, 0.881, and 0.998, respectively. ConclusionImplementation of an all-day AI-based triage system significantly reduced the D2B time, with a corresponding increase in the percentage of D2B times less than 90 minutes in the emergency department. This system may help minimize preventable delays in D2B times for patients with STEMI undergoing primary percutaneous coronary intervention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.