Abstract

A theory and the prototype of a neural controller called INFANT that learns sensory-motor coordination from its own experience are presented. INFANT adapts unforeseen changes in the geometry of the physical motor system and to the location, orientation, shape, and size of objects. It can learn to accurately grasp an elongated object without any information about the geometry of the physical sensory-motor system. This new neural controller relies on the self-consistency between sensory and motor signals to achieve unsupervised learning. It is designed to be generalized for coordinating any number of sensory inputs with limbs of any number of joints. INFANT is implemented with an image processor, stereo cameras, and a 5 degrees-of-freedom robot arm. Its average grasping accuracy after learning is 3% of the arm's length in position and 6 degrees in orientation. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.