Abstract
This paper is concerned with the digital implementation and experimental evaluation of two adaptive controllers for robotic manipulators. The first is a continuous time model reference adaptive controller, and the second is a discrete time adaptive controller. The primary purpose of these adaptive controllers is to compensate for inertial variations due to changes in configuration and payload, as well as disturbances, such as Coulomb friction and/or gravitational forces. Experimental results are obtained from a laboratory test stand, which emulates an one-axis direct drive robot arm with variable inertia, as well as a Toshiba TSR-500V industrial robot. Experimental results from the test stand indicate that these adaptive control schemes are promising for the control of direct drive robot arms. Friction forces arising from the harmonic gear of the Toshiba robot were detrimental if not properly compensated. Because of a high gearing ratio, the advantage of adaptive control for the Toshiba arm could be shown only by detuning the controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.