Abstract
This paper presents the design and practical hardware implementation of optimal neurocontrollers that replace the conventional automatic voltage regulator (AVR) and the turbine governor of turbogenerators on multimachine power systems. The neurocontroller design uses a powerful technique of the adaptive critic design (ACD) family called dual heuristic programming (DHP). The DHP neurocontrollers' training and testing are implemented on the Innovative Integration M67 card consisting of the TMS320C6701 processor. The measured results show that the DHP neurocontrollers are robust and their performance does not degrade unlike the conventional controllers even when a power system stabilizer (PSS) is included, for changes in system operating conditions and configurations. This paper also shows that it is possible to design and implement optimal neurocontrollers for multiple turbogenerators in real time, without having to do continually online training of the neural networks, thus avoiding risks of instability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.