Abstract

A large-scale computational model of the hippocampus should consider plasticity at different time scales in order to capture the non-stationary information processing behavior of the hippocampus more accurately. This paper presents a computational model that describes hippocampal long-term potentiation/depression (LTP/LTD) and short-term plasticity implemented in the NEURON simulation environment. The LTP/LTD component is based on spike-timing-dependent plasticity (STDP). The short-term plasticity component modifies a previously defined deterministic model at a population synapse level to a probabilistic model that can be implemented at a single synapse level. The plasticity mechanisms are validated and incorporated into a large-scale model of the entorhinal cortex projection to the dentate gyrus. Computational expense of the added plasticity was also evaluated and shown to increase simulation time by less than a factor of two. This model can be easily included in future large-scale hippocampal simulations to investigate the effects of LTP/LTD and short-term plasticity in conjunction with other biological considerations on system function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call