Abstract

This paper describes the implementation and evaluation of a trajectory prediction function. This function is a critical component of tactical flight management, a new concept that can increase the resiliency and robustness of trajectory based operations through a paradigm shift that improves Flight Management System (FMS) compatibility with tactical operations. The trajectory prediction function generates and continually updates the fourdimensional flight path that will be flown by the FMS. This motion-based trajectory represents an extension of the aircraft’s current state, and incorporates control laws, mode transition logic, and drag estimation as part of the prediction. The predicted trajectory is then displayed on navigation and vertical situation displays in an effort to reduce mode confusion occurrences and increase situational awareness of what the automation is doing now and what it will do in the future. These display features were evaluated in the Advanced Concepts Flight Simulator at NASA Ames Research Center to investigate the impact on flight crew energy state awareness when operating in the highly constrained and dynamic environment of the Next Generation Air Transportation System. Commercial airline crews flew multiple optimized profile descents under two conditions. In one condition, crews were presented with standard navigation displays, including a Vertical Situation Display (VSD). In the second condition, trajectory predictions were added to both the lateral map display and the VSD. Results show that predictive trajectory displays have the potential to improve situational awareness of the future automation mode and energy state of the aircraft, and that prediction accuracy and computational times are sufficient to support more advanced use in tactical flight management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.