Abstract

Abstract A unified boundary layer and shallow convection parameterization based on a stochastic eddy-diffusivity/mass-flux (EDMF) approach is implemented and tested in the Navy Global Environmental Model (NAVGEM). The primary goals of this work are to improve the representation of convectively driven boundary layers and the coupling between the boundary layer and cumulus regions. Within the EDMF framework the subgrid vertical fluxes are calculated as a sum of an eddy-diffusivity part, which in the current implementation is based on the approach developed by Louis in the late 1970s, and a stochastic mass-flux parameterization. The mass-flux parameterization is a model for both dry and moist convective thermals. Dry thermals, which represent surface-forced coherent structures in a flow, provide countergradient mixing in the boundary layer and, if conditions permit, are the roots for moist thermals. Moist thermals represent shallow convective clouds. The new parameterization implemented in a single-column model (SCM) version of NAVGEM is shown to be able to realistically simulate a variety of dry and moist convective cases. The NAVGEM SCM results are validated against large-eddy-simulation results. The skill of NAVGEM as a global weather forecasting model is considerably improved with the new EDMF parameterization. The EDMF parameterization became part of the operational NAVGEM in November 2013.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call