Abstract

Hexagonal image processing is theoretically superior to that based on the common square lattice, and due to the lack of practical imaging devices, this paper intends to implement a simulated display. The paper investigates the sampling lattices used in the hexagonal image processing, and finds that variable lattices occur in hexagonal discrete Fourier transform (HDFT), while the most commonly used “hyperpel” approach, due to its fixed cell pattern, cannot handle such displaying tasks. Then, the paper proposes to represent each pixel with the exact Voronoi cell (VC) according to the sampling lattice. In the paper, a simple algorithm is presented to compute the VC vertices, and each simulated pixel is constructed with the VC filled with its intensity value, and then the simulated display is implemented by the tessellation of each simulated pixel on the correct lattice position. Finally, experimental results show that the proposed simulated display can display data without geometric distortion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.