Abstract

We present the implementation of a short-tip tapping-mode tuning fork near-field scanning optical microscope. Tapping frequency dependences of the piezoelectric signal amplitudes for a bare tuning fork fixed on the ceramic plate, a short-tip tapping-mode tuning fork scheme and an ordinary tapping-mode tuning fork configuration with an 80-cm optical fibre attached are demonstrated and compared. Our experimental results show that this new short-tip tapping-mode tuning fork scheme provides a stable and high Q factor at the tapping frequency of the tuning fork and will be very helpful when long optical fibre probes have to be used in an experiment. Both collection and excitation modes of short-tip tapping-mode tuning fork near-field scanning optical microscope are applied to study the near-field optical properties of a single-mode telecommunication optical fibre and a green InGaN/GaN multiquantum well light-emitting diode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.