Abstract

Heating, Ventilation and Air Conditioning (HVAC) systems play a fundamental role in maintaining acceptable thermal comfort and air quality levels. Model Predictive Control (MPC) techniques are known to bring significant energy savings potential. Developing effective MPC-based control strategies for HVAC systems is nontrivial since buildings dynamics are nonlinear and influenced by various uncertainties. This complicates the use of MPC techniques in practice. We propose to address this issue by designing a stochastic MPC strategy that dynamically learns the statistics of the building occupancy patterns and weather conditions. The main advantage of this method is the absence of a-priori assumptions on the distributions of the uncertain variables, and that it can be applied to any type of building. We investigate the practical implementation of the proposed MPC controller on a student laboratory, showing its effectiveness and computational tractability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.