Abstract

In aerodynamics, the laminar or turbulent regime of a boundary layer has a strong influence on friction or heat transfer. In practical applications, it is sometimes necessary to trip the transition to turbulent, and a common way is by use of a roughness element (e.g. a step) on the wall. The present paper is concerned with the numerical implementation of such a trip in large-eddy simulations. The study is carried out on a flat-plate boundary layer configuration, with Reynolds number Rex=1.3×106. First, this work brings the opportunity to introduce a practical methodology to assess convergence in large-eddy simulations. Second, concerning the trip implementation, a volume source term is proposed and is shown to yield a smoother and faster transition than a grid step. Moreover, it is easier to implement and more adaptable. Finally, two subgrid-scale models are tested: the WALE model of Nicoud and Ducros (Flow Turbul. Combust., vol. 62, 1999) and the shear-improved Smagorinsky model of Leveque et al. (J. Fluid Mech., vol. 570, 2007). Both models allow transition, but the former appears to yield a faster transition and a better prediction of friction in the turbulent regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.