Abstract

This paper introduces a simulation model for light and heat transport in tissues including perfusion effects. The model enables an efficient simulation of the damaged zone induced with an optical fibre for laser interstitial thermotherapy (LITT). It is designed specially for, but not limited to, tissue ablation in the neck region near to vessels. We describe in detail the effects of the rise in temperature caused by the absorption of light in tissue, using the heat equation and including the cooling effects of flow in vessels and of microperfusion in tissue in order to determine the extent of thermal damage. The extent of the necrosis zone is calculated with a damage function at each point of a finite element method (FEM) mesh. The FEM mesh is implemented with FEMLAB 2.3 as an add-on for finite element modelling for Matlab 6.5. LITT for tumour ablation in liver and some other anatomical regions is a well-known and established method (Bundesärztekammer und Kassenärztliche Bundesvereinigung 2002 Assessment der Bundesärztekammer und der Kassenärztlichen Bundesvereinigung, Köln). Investigations of treatments using LITT in the neck region are still in progress. We propose a refined model to validate the LITT method in the future in another anatomic region, e.g., in the highly sensitive region of the neck. Our calculations show that in order to induce a lesion with a maximum diameter of about 1 cm near to a large vessel, an application time between 3 and 4 min is needed using a laser power of about 10 W with a Nd:YAG 1064 nm radiation wavelength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.