Abstract

Background Increasing the expression rate of recombinant mammalian hormones in Escherichia coli by combining efficient promoters and signal sequences is a never ending process. A self-induced promoter will have some beneficial gains compared to the classical T7 promoter or its variants with isopropyl β-D-1-thiogalactopyranoside (IPTG) as the inducer. Obesity is the prime suspect in widespread frequency of diabetes type II and cardiovascular diseases worldwide. YY (tyrosine-tyrosine) peptide is a local acting hormone, controlling appetite. Excitingly, it was has been shown that a truncated version of the YY peptide, YY(3-36) peptide, has potential as a worthy biopharmaceutical agent in the fight against obesity. Materials and methods To develop an economical expression system for the large scale production of the peptide in Gram-negative bacteria, we introduced a promoter sequence upstream of a chimeric gene for the extracellular expression of this peptide with the assistance of a signal sequence of asparaginase II from E. coli. This system has the advantage of producing a complete sequence of a truncated YY peptide, YY(3-36), without any extra tags that would require further removal with the assistance of expensive specific proteases and reduced the downstream steps, significantly. Results Recombinant production of YY(3-36) peptide under a self-induced promoter proves the efficacy of the asparaginase II signal sequence as a communicator of foreign peptides and proteins into the extracellular space of E. coli. Conclusions The application of fusion protein expression of biopharmaceuticals, especially mammalian hormones, in prokaryotic systems with the help of native signal sequences makes some common tags with expensive proteases for the removal of the attached protein Tag redundant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.