Abstract

Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is tuned for a specific resonant frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies. Vibrations dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. Experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, we carry out the design optimization of the nonlinear torsional vibration absorber using an equivalent 2-DOF modal model. A linear vibration absorber is developed in parallel. Subsequently, both absorbers will be manufactured, assembled and mounted on the system to evaluate their vibration suppression capabilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call