Abstract

Systems and models with dead time or aftereffect, also called hereditary, anisochronic or time-delay systems (TDS), belonging to the class of infinite dimensional systems have been largely studied during last decades due to their interesting and important theoretical and practical features. A wide spectrum of systems in natural sciences, economics, pure informatics etc., both real-life and theoretical, is affected by delays which can have various forms; to name just a few the reader is referred e.g. to (Gorecki et al., 1989; Marshall et al., 1992; Kolmanovskii & Myshkis, 1999; Richard, 2003; Michiels & Niculescu, 2008; Pekař et al., 2009) and references herein. Linear time-invariant dynamic systems with distributed or lumped delays (LTI-TDS) in a single-input single-output (SISO) case can be represented by a set of functional differential equations (Hale & Verduyn Lunel, 1993) or by the Laplace transfer function as a ratio of so-called quasipolynomials (El’sgol’ts & Norkin, 1973) in one complex variable s, rather than polynomials which are usual in system and control theory. Quasipolynomials are formed as linear combinations of products of s-powers and exponential terms. Hence, the Laplace transform of LTI-TDS is no longer rational and socalled meromorphic functions have to be introduced. A significant feature of LTI-TDS is (in contrast to undelayed systems ) its infinite spectrum and transfer function poles decide except some cases of distributed delays, see e.g. (Loiseau, 2000) about the asymptotic stability as in the case of polynomials. It is a well-known fact that delay can significantly deteriorate the quality of feedback control performance, namely stability and periodicity. Therefore, design a suitable control law for such systems is a challenging task solved by various techniques and approaches; a plentiful enumeration of them can be found e.g. in (Richard, 2003). Every controller design naturally requires and presumes a controlled plant model in an appropriate form. A huge set of approaches uses the Laplace transfer function; however, it is inconvenient to utilize a ratio of quasipolynomials especially while natural requirements of internal (impulse-free modes) and asymptotic stability of the feedback loop and the feasibility and causality of the controller are to be fulfilled. The meromorphic description can be extended to the fractional description, to satisfy requirements above, so that quasipolynomials are factorized into proper and stable meromorphic functions. The ring of stable and proper quasipolynomial (RQ)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.