Abstract

Objective. Personalized dose monitoring and risk management are of increasing significance with the growing number of computer tomography (CT) examinations. These require high-quality Monte Carlo (MC) simulations that are of the utmost importance for the new developments in personalized CT dosimetry. This work aims to extend the MC framework EGSnrc source code with a new particle source. This, in turn, allows CT-scanner-specific dose and image calculations for any CT scanner. The novel method can be used with all modern EGSnrc user codes, particularly for the simulation of the effective dose based on DICOM images and the calculation of CT images. Approach. The new particle source can be used with input data derived by the user. The input data can be generated by the user based on a previously developed method for the experimental characterization of any CT scanner (doi.org/10.1016/j.ejmp.2015.09.006). Furthermore, the new particle source was benchmarked by air kerma measurements in an ionization chamber at a clinical CT scanner. For this, the simulated angular distribution and attenuation characteristics were compared to measurements to verify the source output free in air. In a second validation step, simulations of air kerma in a homogenous cylindrical and an anthropomorphic thorax phantom were performed and validated against experimentally determined results. A detailed uncertainty evaluation of the simulated air kerma values was developed. Main results. We successfully implemented a new particle source class for the simulation of realistic CT scans. This method can be adapted to any CT scanner. For the attenuation characteristics, there was a maximal deviation of 6.86% between the measurement and the simulation. The mean deviation for all tube voltages was 2.36% (σ = 1.6%). For the phantom measurements and simulations, all the values agreed within 5.0%. The uncertainty evaluation resulted in an uncertainty of 5.5% ( k=1 ).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.