Abstract

In this work, the implementation of a high-order compact finite-difference lattice Boltzmann method (CFDLBM) is performed in the generalized curvilinear coordinates to improve the computational efficiency of the solution algorithm to handle curved geometries with non-uniform grids. The incompressible form of the discrete Boltzmann equation with the Bhatnagar–Gross–Krook (BGK) approximation with the pressure as the independent dynamic variable is transformed into the generalized curvilinear coordinates. Herein, the spatial derivatives in the resulting lattice Boltzmann (LB) equation in the computational plane are discretized by using the fourth-order compact finite-difference scheme and the temporal term is discretized with the fourth-order Runge–Kutta scheme to provide an accurate and efficient incompressible flow solver. A high-order spectral-type low-pass compact filter is used to regularize the numerical solution and remove spurious waves generated by boundary conditions, flow non-linearities and grid non-uniformity. All boundary conditions are implemented based on the solution of governing equations in the generalized curvilinear coordinates. The accuracy and efficiency of the solution methodology presented are demonstrated by computing different benchmark steady and unsteady incompressible flow problems. A sensitivity study is also conducted to evaluate the effects of grid size and filtering on the accuracy and convergence rate of the solution. Four test cases considered herein for validating the present computations and demonstrating the accuracy and robustness of the solution algorithm are: unsteady Couette flow and steady flow in a 2-D cavity with non-uniform grid and steady and unsteady flows over a circular cylinder and the NACA0012 hydrofoil at different flow conditions. Results obtained for the above test cases are in good agreement with the existing numerical and experimental results. The study shows the present solution methodology based on the implementation of the high-order compact finite-difference Lattice Boltzmann method (CFDLBM) in the generalized curvilinear coordinates is robust, efficient and accurate for solving steady and unsteady incompressible flows over practical geometries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.